Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS Comput Biol ; 17(10): e1009360, 2021 10.
Article in English | MEDLINE | ID: covidwho-1496326

ABSTRACT

The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world's most vulnerable populations most affected. Given their density and available infrastructure, refugee and internally displaced person (IDP) settlements can be particularly susceptible to disease spread. In this paper we present an agent-based modeling approach to simulating the spread of disease in refugee and IDP settlements under various non-pharmaceutical intervention strategies. The model, based on the June open-source framework, is informed by data on geography, demographics, comorbidities, physical infrastructure and other parameters obtained from real-world observations and previous literature. The development and testing of this approach focuses on the Cox's Bazar refugee settlement in Bangladesh, although our model is designed to be generalizable to other informal settings. Our findings suggest the encouraging self-isolation at home of mild to severe symptomatic patients, as opposed to the isolation of all positive cases in purpose-built isolation and treatment centers, does not increase the risk of secondary infection meaning the centers can be used to provide hospital support to the most intense cases of COVID-19. Secondly we find that mask wearing in all indoor communal areas can be effective at dampening viral spread, even with low mask efficacy and compliance rates. Finally, we model the effects of reopening learning centers in the settlement under various mitigation strategies. For example, a combination of mask wearing in the classroom, halving attendance regularity to enable physical distancing, and better ventilation can almost completely mitigate the increased risk of infection which keeping the learning centers open may cause. These modeling efforts are being incorporated into decision making processes to inform future planning, and further exercises should be carried out in similar geographies to help protect those most vulnerable.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemics , Refugees , SARS-CoV-2 , Bangladesh/epidemiology , COVID-19/prevention & control , Comorbidity , Computational Biology , Computer Simulation , Data Visualization , Disease Progression , Humans , Masks , Physical Distancing , Refugees/statistics & numerical data , Schools , Systems Analysis
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.07.21263223

ABSTRACT

With high levels of the Delta variant of COVID-19 circulating in England during September 2021, schools are set to reopen with few school-based non-pharmaceutical interventions (NPIs). In this paper, we present simulation results obtained from the individual-based model, JO_SCPLOWUNEC_SCPLOW, for English school opening after a prior vaccination campaign using an optimistic set of assumptions about vaccine efficacy and the likelihood of prior-reinfection. We take a scenario-based approach to modelling potential interventions to assess relative changes rather than real-world forecasts. Specifically, we assess the effects of vaccinating those aged 16-17, those aged 12-17, and not vaccinating children at all relative to only vaccinating the adult population, addressing what might have happened had the UK began teenage vaccinations earlier. Vaccinating children in the 12-15 age group would have had a significant impact on the course of the epidemic, saving thousands of lives overall in these simulations. In the absence of such a vaccination campaign our simulations show there could still be a significant positive impact on the epidemic (fewer cases, fewer deaths) by continuing NPI strategies in schools. Our analysis suggests that the best results in terms of lives saved are likely derived from a combination of the now planned vaccination campaign and NPIs in schools.


Subject(s)
COVID-19 , Death
3.
R Soc Open Sci ; 8(7): 210506, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1373700

ABSTRACT

We introduce June, an open-source framework for the detailed simulation of epidemics on the basis of social interactions in a virtual population constructed from geographically granular census data, reflecting age, sex, ethnicity and socio-economic indicators. Interactions between individuals are modelled in groups of various sizes and properties, such as households, schools and workplaces, and other social activities using social mixing matrices. June provides a suite of flexible parametrizations that describe infectious diseases, how they are transmitted and affect contaminated individuals. In this paper, we apply June to the specific case of modelling the spread of COVID-19 in England. We discuss the quality of initial model outputs which reproduce reported hospital admission and mortality statistics at national and regional levels as well as by age strata.

SELECTION OF CITATIONS
SEARCH DETAIL